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Abstract 

An efficient method for unstructured mesh-to-mesh interpolation is described. This 
method uses a binary space partitioning tree to sort the elements of the source mesh. Using this 
tree data structure the source mesh elements can be efficiently searched to find the nearest 
element for each of the destination mesh points. Once found, the nearest source mesh element is 
used to compute barycentric coordinates which are then used as weighting coefficients for the 
interpolation. 

Administrative Information 

The work described in this report was performed by the Computational Hydromechanics 
Division (Code 5700) of the Hydromechanics Department at the Naval Surface Warfare Center, 
Carderock Division (NSWCCD). The work was funded by the Office of Naval Research 
(Program Officer: Dr. Ki-Han Kim) under the Force Protection Applied Research Program (PE 
602123N). 

Background 

This report describes the code and algorithms used to perform a one way coupling of a 
Computational Fluid Dynamics (CFD) solver, and a Computational Structural Dynamics (CSD) 
solver. This code was developed at the Naval Surface Warfare Center, Carderock Division under 
the FY08 ONR funded Crashback program. Specifically the methods used to transpose the time 
varying fluid dynamic surface pressure field computed by the CFD solver, to the wetted faces of 
the finite element mesh used in the CSD solver are described. In this report the CFD surface 
mesh is referred to as the source mesh, and the CSD mesh as the destination mesh. Transposing 
the surface pressure field requires that for each point in the destination mesh, a nearest element is 
found in the source mesh from which all desired scalar, and vector quantities may be 
interpolated. 

Binary Space Partitioning Tree 

Due to the relatively large mesh sizes involved (typically greater than lxlO1) a Binary 
Space Partition (BSP) tree, a type of binary search tree, is used to sort the elements of the source 
mesh. This offers an efficient mechanism for identifying the nearest element in the source mesh 
to a given point in the destination mesh. Given the large mesh sizes and that each destination 
mesh point needs an interpolated value, the time invested in building the BSP tree is considered 
acceptable. The effort involved in building the BSP tree is expected to be on the order of nlog(n) 
where n is the number of elements in the source mesh. Once the tree is built the time necessary to 
search for the nearest element is expected to be on the order of log(n) [1]. 

Building the Tree 

For this application a variant of a BSP tree known as a generalized pseudo kd-trcc [2] is 
used. To build the tree the source mesh elements are recursively divided into two bounding 



boxes. A bounding box is a rectilinear box aligned with the coordinate axis. It represents the 
minimum bounding volume of all elements associated with the node of the tree. It could be 
defined in terms of Xmjn, Xmax, Ymi„, Ymax, and Zm\n, Zmax, however for simplicity the vectors 
Pmin(Xmin,Ymjn, Zmm), and Pmax(Xmax,Ymax,Zmax) are defined. Each division is based on cutting the 
parent node's bounding box across its longest axis, and through the average value of all the 
clement centers. Using the element centers simplifies the division, and sorting of the elements. 
Each node of the tree contains: 

• A pointer to an array of all elements (^Elements) 

• An index to the first element in the tree's node (/„) 

• The number of elements in the node {NumberOfSubElements) 

• Two vectors which represent a bounding box (Pmi„, and Pma_x) 

• Pointers to both sub nodes of the tree (Sn, St) 

The original array of all elements is used and never copied during the process of building the 
tree. Each sub-node simply points to a sub-section of the array. Elements within the array are 
than reorganized/sorted by the sub-nodes. The root node of the tree is created by: 

• Loading all elements from the source mesh into the element array 

• Setting I0 to zero 

• Setting NumberOfSubElements to the total number of elements in the source mesh 

• Looping through all nodes, of each element, and calculating Pmi„, and Pmax 

• Setting the Pointers So, and St to Null 

The tree is grown by recursively subdividing the root until the NumberOfSubElements is 50 or 
less. Nodes which have 50 or less elements become terminal, or leaf nodes. The procedure for 
recursively subdividing the root node is: 

If and only if the NumberOfSubElements is greater than 50: 

• Find the longest edge of the bounding box 

• Find the average of all the element centers 

• Divide the node's bounding box with a plane that cuts orthogonally through the 
longest edge of the bounding box and through the average of the element centers 

• Sort the elements in the current cell so that all elements whose centers are below the 
plane go in front of all the elements that are not 

• Create new Sn'. 

o    So—>I0 = lo 

o   So—>NumberOfSubElements = Number of elements found below the plane 

o   Loop through all nodes, of each element in S0, to calculate So—>Pm<„, and 
So~*Pn max 

Create new 5/: 



o   Si—•/„ = So—>NumberOfElements 

o   Si^>NumberOfSubElements=N\\mbeT of elements not found to be below the 
plane 

o   Loop through all nodes, of each element in Si, to calculate the Si—*Pmi„, and 

•    Repeat procedure for Sn, and Si 

Searching for the Nearest Element 

Once the tree is populated it is used to search for the nearest element in the source mesh to 
a destination point. Given the coordinates of a destination point, the distance between it and 
each sub-node's bounding box is calculated, (zero being returned if the point is inside the 
bounding box). If one has a closer distance it is searched first, otherwise Si is arbitrarily 
searched first. This process is repeated recursively until a terminating node is reached; at this 
point each element associated with this terminating node is tested individually to find which is 
closest to the destination point. The index of the closest element, and the distance that it is from 
the destination point is retained during the search process to eliminate branch searches whose 
bounding box is farther from the destination point than the current nearest element. For our 
particular application the source mesh contained only triangular elements. 

Finding the Distance to a Triangle 

Before accurately computing the distance to a source triangle two preliminary tests arc 
performed in an attempt to minimize the number of triangles that are rigorously tested, thus 
saving additional expensive calculations. First each destination point will have an average 
normal calculated for it based on all the destination mesh elements that it is part of. Each 
triangle is tested to find out if the dot product of the average normal of the destination point and 
the normal of the source triangle is greater than zero. Considering only source elements for 
which this dot product is greater than zero ensures that only the source elements that are faced in 
the same general direction as the surface of the destination point are used for interpolation. The 
second test is to see if its distance to the plane of the triangle is greater than the distance to the 
closest triangle so far. If this distance is less than the distance to the current nearest triangle then 
more rigorous calculations are required to determine the actual distance to the triangle. 

To begin calculating the actual distance to the triangle a test is performed to find out if the 
destination point is over the triangle. This test is performed by considering a tetrahedron with 
the destination point (Pd) at the peak, and the points to the source triangle (Po, Pi, Pi) at the base. 
If the point Pa projects into the base then the distance to the plane of the triangle previously 
calculated is in fact the distance to the triangle. If Pd projects outside the base then one of the 
faces will be obtuse to the base, and the distance from the edge to Pa is required. Specifically if 
the normal defined by source triangle (Po, Pi, P2) dotted with the normal defined by triangle (Pd, 
Po, Pi) is less than zero then that face of the tetrahedron is obtuse to the base and another 
calculation will be required to find the distance to the Po, Pi edge. Similarly, if the normal 
defined by triangle (P0, Pi, P2) dotted with the normal defined by triangle (Pd, P|, P2) is less than 
zero then another calculation will be required to find the distance to the P|, P2 edge. Also, if the 
normal defined by triangle (P0, Pi, P2) dotted with the normal defined by triangle (Pa, P2, Po) is 



less then zero then the distance to the P2, Po edge is required. Figure 1 contains pseudo code for 
this method. This pseudo code assumes that VectorType defines the dot product using the "*" 
operator and the cross product using the "|" operator. 

Finding the Distance to an Edge 

If during the process of calculating the distance to a source mesh triangle it is found that 
the destination point cannot be projected onto the triangle then the distance to the closest edge is 
computed. For example, assuming that the edge Po, Pi is the closest edge, the first step is to test 

Float64 BinaryTreeType:: 
DistanceFromTheTriangle(const VectorType&  Pd, 

const VectorTypeS.  PdNormal, 
const ElementTypeS Element, 
SearchResultsTypeS Results) 

( 
VectorTypeS PO = Element.PO 
VectorType& PI = Element.PI 
VectorTypeS P2 = Element.P2 

VectorType BaseNormal = NormalToTriangle(PO,PI,P2); 

Float64 d=Abs(BaseNormal*(Pd-PO)); // d=TheDistanceToThePlane 

// Think of a tetrahedron pd at the peak, P0,P1,P2 at the base 
// if the Pd projects into the base then the height will do. 
// if Pd projects outside the base then one of the faces will 
// be obtuse to the base, and the DistanceFromTheEdge will be 
// required. 

if (PdNormal*BaseNormal<0.0) // If normals are not in the same 
if (d<Results.d) // direction Or if the distance 

{ // to the plane is more then 
// results then don't bother. 

if      (BaseNormal*NormalToTriangle(PO,PI,Pd)<0.0)// If obtuse 
d=DistanceFromTheEdge(Pd,P0,P1); // use edge 

else if (BaseNormal*NormalToTriangle(Pl,P2,Pd)<0.0) 
d=DistanceFromTheEdge(Pd,PI,P2); 

else if (BaseNormal*NormalToTriangle(P2,P0,Pd)<0.0) 
d=DistanceFromTheEdge(Pd,P2,P0); 

if (d<Results.d)      // if distance to the Triangle is 
{ // less then results then update results 
Results.d   = d; 
Results.Index= Element.Index; 

} 
I 

}; 

Figure 1. Pseudo Code for Finding the Distance to a Triangle 



whether or not the triangle Pj, P0, Pi is obtuse at P(), or P|, if it is then the distance from the 
obtuse point to Pd is the distance from the edge. Otherwise the height of the triangle is used as 
the distance to the edge. Figure 2 contains pseudo code for this method. 

Interpolation 

Once the nearest source triangle to a destination point has been identified any scalar or 
vector data associated with the points of the source triangle can be interpolated to the destination 
point. This application uses a variant of barycentric coordinates [3,4]. Barycentric coordinates 
are weighting coefficients that when multiplied by the source triangle points sum to the 
destination point. Specifically barycentric coordinates satisfy the following equation, 

P=Co*Po+C,*P,+C:*P: 

1=C0+C,+C2 

where P could be any point in the plane of the triangle and Po, Pi, P? are points of the nearest 
source triangle, and Co, C|, and CT are the barycentric coordinates. By definition the barycentric 
coordinates must add up to 1. The barycentric coordinates are used to interpolate any scalar by 
simply multiplying the coordinates by their respective scalar values like so, 

Sd=Co*So+Q*Si+C2*S2 

Unfortunately, for this application P<j is not likely to lie on the plane of the triangle, so it will be 
projected to the nearest point in the plane of the triangle. The barycentric coordinates are then 
calculated using the following equations: 

Float64 BinaryTreeType:: 
DistanceFromTheEdge(const VectorTypeS Pd, 

const VectorTypeS PO, 
const VectorType& PI) 

< 

VectorType L =P1-P0 
VectorType R0=Pd-P0 
VectorType Rl=Pd-Pl 
Float64    d; 

if      (RO* L<0. 0) 
d=Abs(Pd -PO) t 

else if (Rl* L>0. 0) 
d=Abs(Pd -PI) i 

else 
d=Abs(RO|Uni t(D) 

return(d); 

}; 

// If triangle obtuse at PO 
// Use distance From The Pd to PO 
// If triangle is obtuse at PI 
// Use distance From The Pd to PI 

// Use height of the triangle 

Figure 2. Pseudo Code for Finding the Distance to an Edge 



TotalArea= AreaOfTriangle (Po,Pi,P2) 

Cn = AreaOfTriangle(P,P,,P2)/TotalArea 

Ci = AreaOfTriangle(P,P2,P0)/ Total Area 

C2 = AreaOfTriangle(P,P0,Pi)/ Total Area 

In the current implementation of the code these values are always positive and as such arc 
incorrect if P is outside the boundaries of the source triangle. The correct coordinates would 
need to have at least one negative value if P was outside the boundaries of the source triangle. 
Using the barycentric coordinates under these conditions is akin to extrapolation rather than 
interpolation. In order to avoid this type of extrapolation and to ensure that we don't use 
malformed barycentric coordinates, once again the tetrahedron (Pd,Po,Pi,P2) is considered, and if 
any of the faces are obtuse then the method is switched to projecting Pd to the obtuse edge of the 
base triangle and calculating the coefficients necessary to linearly interpolate Pd from the edge 
points. If, however, Pd projects outside of the edge points then the nearest point in the triangle is 
used. Figure 3 contains pseudo code for calculating the coordinates. 

void GeometryPartType:: 
UpdateBarycentricCoordinates(const VectorType&  Pd, 

ElementTypeS      Element, 
SearchResultsTypeS Results) 

{ 

Float64 C[3]; 
Float64 TotalArea; 

VectorType BaseNormal; 
VectorType Pm; 

VectorTypeS PO=Element.PO 
VectorTypeS Pl=Element.PI 
VectorTypeS P2=Element.P2 

BaseNormal=NormalToTriangle(PO,PI,P2); 

Pm=Pd-((Pd-PO)*BaseNormal)*BaseNormal; // Pd projected to the plain 

C[0]=AreaOfTriangle(Pl,P2,Pm); 
C[l]=AreaOfTriangle(P2,P0,Pm); 
C[2]=AreaOfTriangle(P0,Pl,Pm); 

TotalArea = C[0]+C[1]+C[2]; 

C[0]/= TotalArea; 
C[l]/= TotalArea; 
C[2]/= TotalArea; 

Figure 3. Pseudo Code for Calculating Barycentric Coordinates 



// Think of a tetrahedron Pd at the peak, P0,P1,P2 at the base 
// if the Pd projects into the base then the height will do. 
// if Pd projects outside the base then one of the faces will be 
// obtuse to the base, and the DistanceFromTheEdge will be 
// required. 
if (BaseNormal*NormalToTriangle(PO,PI, Pd)<0.0)  // if obtuse face 

{ 
C[21-0.0; 
UpdateBarycentricCoordinatesFromEdge(Pd, PO, PI, C [0] , C [ 1 ] ) ; 
) 

else if (BaseNormal*NormalToTriangle(Pl,P2,Pd)<0.0) 
{ 
C[0]=0.0; 
UpdateBarycentricCoordinatesFromEdge(Po,PI,P2,C[1],C [2 ] ) ; 
} 

else if (BaseNormal*NormalToTriangle(P2, PO, Po)<0.0) 
{ 
C[l]-0.0; 
UpdateBarycentricCoordinatesFromEdge(Po, P2, PO, C [2 ] , C [ 0 ] ) ; 
I 

Results.BarycentricCoordinates[0]=C[0] 
Results.BarycentricCoordinates[1]=C[1] 
Results.BarycentricCoordinates[2]=C[2] 
}; 

void GeometryPartType:: 
UpdateBarycentricCoordinatesFromEdge(const VectorTypeS Po, 

const VectorTypeS P0, 
const VectorTypeS PI, 
Float64& CO, 
Float64& Cl) 

i 
VectorType L =P1-P0; 
VectorType R0=Po-P0; 
VectorType Rl=Po-Pl; 
Float64   d; 

if      (R0*L<0.0) 
I 
C0-1.0; 
Cl-0.0; 
I 

else if (R1*L>0.0) 

C0= = 0 0; 
Cl = 
i 

=1 0; 

el se 
1 
Cl = = (R0* Uni t(L))/Abs (L); 

}; 

C0 = 

} 

=1 0- Cl; 

Figure 3. (Continued) 
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Summary 

An efficient method for unstructured mesh-to-mesh interpolation has been presented. This 
method uses a binary space partitioning tree to sort the elements of the source mesh. Using this 
tree data structure an efficient search is performed for the source mesh element nearest each of 
the destination mesh points. Once found the nearest source mesh element is used to compute 
barycentric coordinates which are then used as weighting coefficients for the interpolation. This 
method has been successfully implemented and used for coupling of a CFD and CSD code for 
the simulation of fluid structure interaction problems. 
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